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Abstract—Mesoscale IoT applications, such as P2P energy
trade and real-time industrial control systems, demand high
throughput and low latency, with a secondary emphasis on energy
efficiency as they rely on grid power or large-capacity batteries.
MARS, a multi-radio architecture, leverages ML to instantan-
eously select the optimal radio for transmission, outperforming
single-radio systems. However, MARS encounters a significant
issue with cost sensitivity, where high-cost errors account for 40%
throughput loss. Current cost-sensitive ML algorithms assign
a misclassification cost for each class, but not for each data
sample. In MARS, each data sample has different costs, making
it tedious to employ existing cost-sensitive ML algorithms. First,
we address this issue by developing COMNETS, an ML-based
radio selector using oblique trees optimized by (TAO). TAO
incorporates sample-specific misclassification costs to avert high-
cost errors, and achieves a 50% reduction in the decision tree size,
making it more suitable for resource-constrained IoT devices.
Second, we prove the stability property of TAO and leverage
it to understand the critical factors affecting the radio-selection
problem. Finally, our real-world evaluation of COMNETS at two
different locations shows an average throughput gain of 20.83%,
17.39% than MARS.

I. INTRODUCTION

The Internet of Things (IoT) is rapidly utilized in day-
to-day lives for asset monitoring, home automation, and In-
dustrial automation as it reduces the human effort involved.
Conventional IoT applications were utilized in small-scale
deployments like home automation, that span up to 100m.
These applications utilize short-range radios like Zigbee and
Bluetooth Low-Energy (BLE). Due to recent advancements in
the IoT radio technology, long-range radios like WiFi-HaLow,
LoRa, Sig-Fox, and NB-IoT were developed [1] for large-scale
applications, like Microsoft Farmbeats [2], ranging between
1-5Km. The applications that range between 100-1000m, like
Industrial automation[3], P2P energy-trade in smart meters [4],
[5], are termed as the mesoscale IoT applications.

Mesoscale IoT applications are identified as the new
and upcoming category of IoT applications [6]. Unlike the
traditional IoT applications that have energy constraints, the
mesoscale applications are either grid-powered [7], [8], [9] or
have a large-battery reserve [5], [10], [4]. These mesoscale
applications range between 100-1000m, with no specialized
radios developed to cater to these applications [6]. To solve
this issue, MARS [6] employs a multi-radio architecture
comprising of multihop Zigbee and single hop LoRa radios
with radio selection using axis-aligned trees optimized by the
TAO [11]. MARS identifies the gray-region, 500-1200m from
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Table I: Cost-sensitivity in radio selection
T1 T2

Zigbee Throughput 7000 4600
LoRa Throughput 2000 4500
Throughput Loss 5000 100

Category High-cost Low-cost

the gateway, where Zigbee and LoRa radios achieve compet-
itive throughput. Due to the erratic link quality variations in
the mesoscale environment, it is uncertain which radio will
achieve better throughput at a given time instant. So, MARS
formulated the radio selection problem as a classification
problem with 0/1 loss, to maximize the throughput.

Classification problems in machine learning focus on
maximizing classification accuracy, assuming equal cost for all
misclassification errors [12], [13], [14]. However, classification
accuracy is not the only important factor in many real-
world applications, and each misclassification error may incur
different costs [15], [16].

For example, in brain tumor detection applications, wrongly
identifying a healthy patient as a tumor patient has a different
cost than identifying a tumor patient as a healthy patient.
Churn modeling identifies the customers that are more likely
to leave a service provider. Accurately identifying the churner
is the task at hand but identifying the profitable churner
and unprofitable churner is more important in this context
[17]. In marketing applications, wrongly identifying that a
specific customer will not accept the offer when they are
ready to accept the offer costs money while the vice-versa
prediction error costs time [18]. Finally, in intrusion detection
applications, classifying malicious connections as benign has
a different cost than the vice-versa classification.

Cost-sensitivity in radio selection. In the context of ML-
based radio selection in multi-radio IoT networks, cost of
misclassification can be defined as the difference in the instant-
aneous throughput of the two radios at a given time instance.
It is to be noted that this equation is valid only when the ML
model misclassifies low-throughput radio as high-throughput
radio. This can be formulated as shown in equation 1 below:

C(t) = |Z(t)− L(t)| , ∀t ∈ T (1)

where T is the set of all time instances, C(t) is the cost of
misclassifying a low-throughput radio as the high-throughput
radio at time instance t, Z(t) is the throughput of a Zigbee
radio at time instance t and L(t) is the throughput of a LoRa
radio at time instance t.



Table. I illustrates the importance of cost in the radio selec-
tion problem. In the radio-selector problem, when one radio
is achieving higher throughput than the other, the difference
in throughput will not be the same for all the instances. For
example, at T1, let’s assume that the throughput of the ZigBee
radio is 7000 bps and the throughput of LoRa is 2000 bps.
The throughput difference between these two radios at this
time instance is 5000 bps. At T2, say the throughput of a
Zigbee radio is 4600 bps and the throughput of a LoRa radio
is 4500 bps. The throughput difference is only 100 bps. At
T1, assuming that the radio selector algorithm misclassifies
the low-throughput LoRa radio as the high-throughput radio
costs 5000 bps, while a misclassification at T2 costs only
100 bps. Misclassification at time T2 is tolerable since there
is little throughput gain, while the misclassification at time T1
is intolerable for the multi-radio system.

Cost-sensitive ML algorithms in the literature define a cost
matrix associated with misclassifying each class. Here, the
misclassification cost is always tied to a class instead of a
specific data sample [15]. In the radio selector problem, the
cost varies for each data sample. Cost-sensitive optimization
for each data sample is tedious (refer §IV for more details). An
intuitive way is to utilize the cost in the loss function of the ML
models. Our experiments with five-fold cross-validation show
that this method gives a model that is not well generalized for
unseen data (refer §V-B).

First, we employed Oblique-trees optimized with TAO[11]
algorithm to solve this problem. TAO[11] does this optim-
ization gracefully to avoid high-cost errors as explained in
§IV. To the best of our knowledge, we are the first to
employ TAO[11] to optimize Oblique trees for this cost-based
optimization. Compared to the other commonly used models
like SVM, Logistic Regression and CART, TAO-Oblique trees
achieve the best results. The TAO[11] optimization algorithm
not only optimizes to avoid high-cost errors, but also makes
the trees 50% smaller compared to the other models.

Second, we interpret the essence of the radio selection prob-
lem using the tree stability property of TAO[11] algorithm.
TAO not only optimizes cost-sensitive oblique trees and makes
them smaller, but it also provides stability to the tree when
new data are added. In general, the decision trees (axis-
aligned/Oblique) are easy to interpret. The reason they are
not extensively used is that when new data are added, they
induct a completely new tree with different rules [19], [20].
TAO[11] optimization on Oblique trees overcomes this issue
by providing stability to the tree, i.e. TAO optimization reduces
this drastic change in the tree structure even when new data
are added. This helps to understand the essence of the radio
selection problem at hand. Since TAO-Oblique trees use a
linear combination of multiple features, it is tedious to extract
a meaningful reason from the interpretations. So, we use
TAO[11] optimized sparse oblique trees to solve this issue.
Sparse-oblique trees reduce the number of parameters used in
each decision node, making it easier to extract a meaningful
reason for the interpretations.

Finally, the TAO[11]-Oblique trees are converted into

IF...ELSE statements for easier deployment in resource-
constrained IoT devices. Our real-world, large-scale evaluation
of COMNETS, powered by TAO[11]-Oblique tree, shows a
throughput gain of 20.83% & 17.39% over the state-of-the-art
MARS, at locations A & B respectively.

In summary, the contributions of our work are:
• We showed the importance of cost-sensitivity in multi-

radio networks through in-field experiments.
• We developed TAO[11]-Oblique trees that optimize to

avert high-cost classification errors.
• We provided insights into the radio selection problem by

exploiting the stability property of the TAO[11].

II. RELATED WORK

Bahl et al. [21] showed that a multi-radio system is be-
neficial for wireless networks. A lot of multi-radio wireless
systems [22], [23] has been developed to optimize the perform-
ance of the networks like energy-efficiency [24], [25], [26] and
routing management [27]. Backpacking [28] was developed for
high data rate sensor networks. Kusy et al. [25] developed a
multi-radio architecture for WSN. They show that employing
two radios with multi-hop network topology in the same node
improves reliability with 3-33% energy overhead. LoRaCP
[29] employs a ZigBee+LoRa multi-radio network for faster
control packet transmissions in multi-hop WSN. Gummeson
et al. [30] optimize energy consumption by employing a
Reinforcement Learning (RL) based adaptive link layer to
switch radios (CC2420+XE1205) based on channel dynamics.
Using RL is detrimental because of: (i) Very high training data
requirements and, (ii) inference latency[6]. Lymberopoulos et
al. [26] switch radios (Zigbee+WiFi) with a threshold-based
algorithm optimizing for energy efficiency.

While most of the above multi-radio systems developed for
IoT networks optimize for energy efficiency over small-scale
deployments, MARS [6] optimizes for throughput and latency
on mesoscale applications. Initially, they identified the absence
of a fully developed specialized radio for emerging mesoscale
IoT applications. To close this gap, they first conducted a
qualitative analysis on the suitability of all the available IoT ra-
dios for mesoscale application environments and identified that
Zigbee2.4GHz and LoRa915MHz are the better candidates.
Their analytic and experimental analysis with these two radios
shows that Zigbee and LoRa achieve competitive throughput
in the gray-region, 500-1200m from the gateway [6]. Since
it is uncertain which radio will provide higher throughput
at the time of transmission, they developed a Decision Tree
(DT) model using axis-aligned trees to predict the high-
throughput radio and further optimize this DT model with
Tree-Alternating Optimization (TAO) algorithm[11]. This ML
model needs the link quality of LoRa and the instantaneous
path quality estimations of the Zigbee radios. The traditional
path quality estimations of Zigbee are not instantaneous.
Hence, they develop a DT-based instantaneous path quality
estimation to provide instantaneous inputs for the ML model.
On taking the instantaneous inputs, their ML model will output
the high-throughput radio to transmit the scheduled packet.
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Figure 1: Motivation for cost-sensitive learning

Table II: Throughput gain and optimization margin

Average throughput gain (in %)
Location A Location B

MARS 49.79 48.20
PERFECT OPTIMIZER 73.23 69.50

OPTIMIZATION MARGIN 23.44 21.30

III. MOTIVATION

We quantified this cost sensitivity with traces obtained from
real-world experiments. From these traces, we categorized
the radio selection errors as high-cost and low-cost errors.
Low-cost errors have a throughput difference between two
radios less than 200 bps. High-cost errors have a throughput
difference greater than 200 bps.

Figure 1 shows our motivation to pursue cost-sensitive
learning for this radio selector problem. In Location A, the
low-cost errors amount to 81% of the total radio selection
errors costing 59% of the total throughput loss. The high-cost
errors amount to 19% of the total radio selection errors costing
41% of the total throughput loss. Even though the difference
between the number of high-cost and low-cost errors is very
high, the difference between the total throughput loss between
these two categories of errors is very low. A similar trend is
seen at Location B. If the decision trees are optimized to avoid
high-cost errors, nearly 20% of the radio selection errors can
be avoided, leading to a reduction of 40% total throughput
loss in the multi-radio system.

The throughput gain and optimization margin are tabulated
in Table II. The average throughput gain of MARS in Loc-
ation A and Location B is 49.79% and 48.2% respectively.
Assuming that a perfect optimizer algorithm can avert all high-
cost errors, the average throughput gain of the multi-radio
system at Locations A & B will be increased to 73.23% and
69.50% giving an optimization margin of 23.44% and 21.30%
respectively. This motivates us to pursue the cost-sensitivity
problem for multi-radio IoT networks.

IV. OPTIMIZING COST-SENSITIVE LOSS

From a machine learning perspective, our problem consists
of a cost-sensitive binary classification problem, where the
two classes are LoRa, ZigBee radios. At any point in time

for a given state of the system, if the ML model makes
the correct prediction, i.e. chooses the radio with the highest
throughput, then there is no corresponding loss for this case.
But if the model makes an incorrect prediction at a given
time instance, then there is a corresponding loss, which is the
opportunity cost of choosing the radio with better throughput,
whose amount is instance/time-specific. In order to train an
ML model that optimizes for the best possible throughput, we
first need to define a desired objective (loss) function.

Let {xn, yn, cn}Nn=1 be our training set of N points, where
x ∈ RD is a D-dimensional feature vector describing the
current state of the system, y ∈ {0, 1} is a class label indic-
ating the radio with better throughput, and c ∈ R>0 is a cost
(weight) of the instance obtained by the difference between
two types of radio throughputs. Let T (x;Θ): RD → {0, 1} be
an oblique decision tree with learnable parameters Θ. Based
on the aforementioned discussion on the importance of costs
in our setting, we aim to optimize the loss function:

min
Θ

L(Θ) =

N∑
n=1

cn · L(yn, T (xn;Θ)) (2)

where L(·, ·) is a 0/1 loss. With the inclusion of costs {cn}Nn=1,
the objective function of (2) puts more importance on instances
where there is a large gap between the throughputs of the
two radio types while misclassifying instances with small
throughput differences is less important. It captures exactly
what we are after in our radio selection problem: better overall
throughput. However, the loss function L(·, ·) is not differen-
tiable, and with another highly non-differentiable function as
a decision tree T (x;Θ) makes the learning problem of (2)
much harder to optimize.

To optimize a cost-sensitive 0/1 misclassification loss over
a decision tree T (x;Θ), we rely on the TAO algorithm. It is
a general algorithmic framework that can optimize different
types of loss functions over various tree-based methods, and
we will apply it here to learn cost-sensitive oblique decision
trees. At a higher level, the TAO algorithm operates very
differently than traditional tree learning methods such as
CART or C5.0. Instead of growing a tree greedily starting
from a root node based on some impurity criteria, it takes an
initial tree of some predetermined fixed structure and initial
parameters (e.g. a complete tree of depth ∆ or a greedily
induced tree), and performs alternating optimization steps over
each node parameters, and with each such step guaranteeing a
monotonic decrease of an objective function. Conceptually, it
operates similarly to how neural networks are learned: defining
a model architecture (cf. tree structure) and initial parameters
(cf. tree parameters), and optimizing them with gradient-based
methods (cf. alternating optimization). Below we describe
more formally the decision tree T (x;Θ), and provide the
specific details of optimization steps in TAO for the cost-
sensitive loss. The predictive function T (x;Θ) of a decision
tree works by routing an instance x through a root-to-leaf
path where each decision node i ∈ D (D is the set decision
node indices, L is the set of leaf indices) in the path uses a



(a) Location A - Mesh topology (b) Location B - Mesh topology
Figure 2: Mesh topology set up at locations A and B

Figure 3: Multi-radio hardware

decision function gi(x;θi): RD → {lefti, righti} ⊂ D ∪ L to
decide which child node the instance x will be sent next. In
this paper, we consider oblique trees that use a linear model
at decision nodes: gi(x;θi) = wT

i x + wi0 with learnable
parameters θi = {wi,wi0}. The actual prediction of the
tree T (x;Θ) happens in the leaf, where it just outputs the
leaf’s class label i.e. the radio type. So a leaf j ∈ L has
only a single learnable parameter θj ∈ {0, 1}. With learnable
parameters explicitly defined, we now include regularization
(penalty) terms on them in the objective function. The main
purpose of this is to obtain models with better generalization
performance as well as remaining small in the number of
parameters and size. In particular, we include ℓ1 norm penalty
on decision node hyperplanes. This helps to produce sparse
hyperplanes, i.e. those with few nonzero weights, and if the
regularization term is high enough, then the entire weight
vector will turn to zero. A decision node with few nonzero
weights are typically more interpretable, and the one that has
entirely zero hyperplane sends all instances to only one child
(gi(x;θi) = 0T x+wi0 = wi0), whereby an entire other child
subtree can be pruned. With regularization terms included, the
final objective function that we optimize is the following:

min
Θ

E(Θ) =

N∑
n=1

cn · L(yn, T (xn;Θ)) + λ
∑
i∈D

∥wi∥1 (3)

Given some tree structure and initial parameters, the TAO
algorithm optimizes the above objective by monotonically
decreasing it in each step because of the following theorems:

Seperability. states that the objective function (3) separates
over sets of any non-descendant nodes in the tree given the
other fixed nodes. This stems from the fact that the tree makes

hard decisions, and that the training points that reach any
set of non-descendant nodes are disjoint. The implications of
this theorem are that the non-descendant set of nodes can be
independently optimized in parallel. The exact form of the
node optimization depends on the node type (i.e. a decision
node or a leaf) as explained below.

Reduced problem over decision nodes. Optimizing the
top-level objective function (3) over the parameters of a
decision node i ∈ D reduces to a simpler problem of a
weighted 0/1 loss binary classification that depends only on
the training instances that reach this node i. This follows
from the fact that the only thing a decision node can do is
to send a point xn either to the left or to the right child
subtrees. If both child subtrees classify the point xn correctly
(or incorrectly), then it does not matter where to send it, and
so those points can be discarded from the reduced problem.
But if one child subtree classifies it correctly, while the other
does not, then we want the decision function gi(xn;θi) to
learn to send it to the “correct” child subtree. Repeating this
observation for all training points in the reduced set, we can
form a binary classification problem, where the ground truth
binary labels correspond to the “correct” child for each point.
And the problem is weighted because each training instance
carries the original costs from the top-level objective function.
There is also an ℓ1 penalty on decision node weights ∥wi∥1
that directly comes to the reduced problem from the top-level
objective. Solving exactly a 0/1 misclassification loss over a
linear model (and with ℓ1 penalty) is in general NP-hard prob-
lem, but we can approximate this reduced problem by a convex
surrogate such as logistic regression. In our implementation,
we use an ℓ1-regularized logistic regression solver inside the
LIBLINEAR library [31]. To ensure a monotonic decrease of
the objective, we can update the decision node parameters by
the logistic regression solution only if it improves over the
previous one in terms of the weighted 0/1 loss.

Reduced problem over leaf nodes. The top-level optimiz-
ation problem (3) over a leaf node j ∈ L is simply the same
loss function but over a leaf parameter θj and over the set of
training points that reach this leaf. With simple constant leaf
nodes, the optimal solution is just a weighted majority class.

The theorems underlying the TAO algorithm tell us how
individual nodes must be optimized but do not prescribe
the order the nodes must be visited. We follow the reverse
breadth-first-order approach similar to the original paper on



TAO [11]: all nodes at the deepest level (from root) are
optimized first, then their parents, and so on, until the root
node. This is repeated multiple times (at most 20) until the
objective function converges. As for the initial tree structure
and parameters, we experiment with either a random complete
tree of depth ∆ or the one obtained from a CART algorithm
and choose the best one (in terms of validation error).

V. COMNETS ML MODEL

In this section, we explain the multi-radio system we built,
the topology of our deployments for data collection, and the
process of building the machine learning models.

Multi-radio hardware is shown in Figure 3. This consists
of a Raspberry Pi 3B hosting two radios, (i)USB-based Te-
losB [32] Zigbee mote and (ii) a USB-based LoStik LoRa [33]
radio. This multi-radio node is powered by a portable external
power bank. We protected this node using a PVC case during
deployments. The Raspberry Pi 3B will send a command to
both the TelosB [32] and LoStik [33] radios, once every 3
seconds, to transmit a 29-byte packet, destined to the gate-
way, concurrently. LoRa radios employ ALOHA MAC while
Zigbee radios use CSMA MAC. Link-level acknowledgments
are disabled in the TelosB [32] Zigbee motes.

Topology setup is done with 15 multi-radio end nodes and
one gateway. LoRa radios form a single-hop network where
a LoRa radio can directly communicate with the gateway
and Zigbee radios form a multi-hop mesh topology to reach
the gateway. Multi-hop Zigbee network uses a distance-vector
routing [34] protocol for multi-hop routing. Since our region
of interest is the gray-region [6], most of the multi-radio nodes
are populated in the gray-region (0.5-1.2Km from gateway) at
two different locations A (Fig. 2a) and B (Fig. 2b).

Data Collection is done on the mesh topology deployed in
both the above-mentioned locations. Data is collected from the
nodes populated in the gray-region [6]. A total of 25,500 data
packets were recorded. This comprehensive data set covers
all the different dynamics of the deployed environment. The
throughput of each transmitted data packet is recorded. A Py-
thon script labels this data set to identify the high-throughput
radio and its associated loss for each transmitted data packet.
The associated loss is calculated as the difference in the
throughput of a high and low-throughput radio. We formulate
this radio selection problem as a classification problem and
develop multiple classification models, that take in the input
feature vector engineered with domain knowledge, following
the same procedure as done in MARS [6].

Problem formulation, Feature Selection and Engineering.
We formulated this radio selection problem as a classification
problem and developed multiple classification models, that
take in the input feature vector engineered with domain
knowledge, following the same procedure of MARS [6].

The classification model takes the input features E2E path
quality of LoRa radios (E2E-PQLoRa), and the E2E path
quality of Zigbee radios (E2E-PQZigbee) to output a high
throughput radio. The input feature vector is expressed as:

Inputi = [HNZ , E2E RSSIL, E2E PRRZ , E2E RNPZ ]
(4)

HN is the Hop Number that denotes a node’s distance from
the gateway in terms of hops. This value is obtained from
the multi-hop Zigbee radios running a DV routing protocol
[34] for multi-hop Zigbee communications. E2E RSSILoRa

is the End-to-End RSSI of LoRa radios. This is obtained
by exploiting channel reciprocity as done in MARS[6].
E2E PRRZigbee is the end-to-end packet reception ratio of
Zigbee radios and E2E RNPZigbee is the Required Number
of Packets [35] obtained from Zigbee radios.

The output of the machine learning model is the radio
predicted to have higher instantaneous throughput. This can
be expressed as:

Outputi = [Zigbee|LoRa] (5)

A. Cost-weighted accuracy metric

The decision trees use the traditional 0/1 accuracy to cal-
culate the train/test accuracy of the models. Since we develop
models that are optimized to avert all the high-cost errors, we
use the Cost-Weighted Accuracy (CWA) metric as explained
below:

CWA =

∑
n cnI(yn, T (xn))∑

n cn
.100 (6)

where c is the cost. In the radio selector problem, the cost
is the throughput loss incurred as the result of choosing a low-
throughput radio instead of a high-throughput radio. I(p,q) is
an indicator function that is equal to one when p = q, yn is
the ground truth, T(xn) is the classification model that takes
input xn and returns an output.

B. Models and their prediction accuracies

The test and train CWA of three widely used models SVM
[36], Logistic Regression [37] and CART [38] decision trees
are tabulated in Table III. These models are trained with 1500
samples like MARS [6].

The accuracies of these models are modified to account for
loss as shown in equation 6. The training and testing accuracies
averaged over a five-fold cross-validation are tabulated in
Table III. SVM shows a higher testing accuracy than the train-
ing accuracy. This means the model is not well-generalized
for unseen data. While Logistic Regression shows a similar
trend in Location A, its training and testing accuracies are
very low for Location B. The CART model achieves better
results than SVM and LR. However, the difference between
training and testing CWAs of CART is high, meaning that
the model is not generalized for unseen data. Optimizing the
Axis-aligned (CART) tree with TAO [11] solves this problem,
but the Oblique tree [39] optimized with TAO algorithm [11]
achieves better CWA than axis-aligned trees. TAO-Oblique
trees achieve lesser training accuracy than CART in Location
B, but the testing CWA is higher than CART. This means that



Table III: Cost-weighted accuracies of different machine learning models and optimizations.

ML
Models &

Optimizations

Location A Location B
Training CWA

(in %)
Testing CWA

(in %) Depth No. of Leaves Training CWA
(in %)

Testing CWA
(in %) Depth No. of Leaves

SVM 92.48 ± 0.33 92.66 ± 0.66 - - 80.12 ± 0.54 82.74 ± 0.80 - -
LR 92.64 ± 0.35 92.78 ± 0.44 - - 80.94 ± 0.52 80.40 ± 1.37 - -

CART 97.68 ± 0.42 93.56 ± 1.11 8.0 ± 0.6 31.6 ± 5.7 92.25 ± 2.27 85.88 ± 1.49 8.8 ± 4.1 33.8 ± 24.1
TAO-Axis Aligned 96.36 ± 1.09 94.67 ± 1.68 7.2 ± 1.3 25.2 ± 4.8 91.61 ± 1.92 86.14 ± 1.57 8.0 ± 3.8 24.2 ± 23.5

TAO-Oblique 97.11 ± 0.59 95.47 ± 1.06 6.8 ± 1.2 18.8 ± 5.8 89.90 ± 1.56 87.87 ± 1.50 5.2 ± 2.2 13.0 ± 7.1

Table IV: Decision rules of the sparse tree shown in Fig. 4.

Tree Node IDs Weights for linear combination of the features

HN RSSI PRR RNP Regularization
Constant

Node 0 0.958733267484 1.025309937395 -0.074761701442 0.077471341337 -0.122153674469
Node 1 1.415681867042 0 0 0 0.143560158843
Node 4 0 -1.298779855192 0 -0.211013927858 -1.448720963148

Figure 4: Sparse oblique tree

the TAO [11] algorithm optimizes the decision tree and makes
it suitable for real-world deployments. On average, the TAO
[11] algorithm can reduce the space complexity of the trees
by 50%. TAO [11] algorithm can optimize the decision trees
trained with lesser training data to perform better in the real
world while reducing the space complexity of the trees to be
deployed. This makes the TAO [11] algorithm more suitable
for IoT deployments requiring less data collection effort. So,
we use TAO-oblique trees for our experiments.

VI. UNDERSTANDING RADIO SELECTION VIA TAO’S
STRUCTURAL STABILITY PROPERTY

TAO-optimized sparse-oblique trees enable the extraction
of meaningful insights from the interpretations by reducing
the number of features used at the decision nodes [39].
Different combinations of all the feature vectors are tried non-
homogeneously at each decision node. A tree providing better
insights with reasonable accuracy is utilized for interpretations.
The structure of the TAO-optimized sparse oblique tree is
shown in Figure 4 and the corresponding weights are shown
in Table IV.

At Node 0, higher emphasis is given to the Hop number and
RSSI to divide the dataset into two parts. If the data sample
has a higher hop number, i.e. farther away from the gateway,
with the best RSSI, the tree always chooses LoRa.

At Node 1, we have the data samples that are not farther
away from the gateway with better RSSI. This decision node
emphasizes only on the Hop number. If the hop number is
lower, i.e., the nodes are closer to the gateway. The tree always
chooses the Zigbee radio to transmit as it provides higher
throughput at closer distances.

At Node 4, we have the data samples that are in between
farther and closer nodes. At this distance, higher emphasis is
given to the RSSI of the LoRa radio and RNP [35] of the
Zigbee radio. This means that RNP and RSSI are the two
important features required to identify the high-throughput
radio in the gray-region. Note that PDR is not as useful as
RNP for the multi-hop Zigbee radios. We infer that this may
be the case due to the RNP metric providing a quantitative
measurement of the underlying distribution of packet losses
instead of just an average number like PDR, leading to a better
estimate of expected throughput.

VII. LARGE-SCALE EVALUATIONS

COMNETS is evaluated on a real-world, large-scale mesh
topology at two different locations as shown in Figures 2a
and 2b. The deployments were done in complex environments
that consisted of different building materials, human influx,
and fleeting reflectors. The end devices will schedule a packet
every three seconds periodically, destined to the gateway.
When the packet is scheduled, the TAO[11]-oblique tree-based
radio selector will select a radio for transmission. 10,400 data
packets were transmitted for these experiments.

Benchmarks. The MARS [6] multi-radio system already
outperforms Gummeson et al. [30] and the threshold-
based [26] multi-radio system. However, we compare COM-
NETS with LoRa and Zigbee single radio systems and all the
above-mentioned multi-radio systems.

Metrics. We evaluated the performance of COMNETS at
two different locations on the following metrics: (i) Through-
put, (ii) Latency, and performance ratio on different packet
generation intervals.

Results. The throughput gain of COMNETS is plotted
in Figure 5a and 5b for both the locations A and B. At
Location A (Fig. 5a), Zigbee achieves high throughput for
42% of the transmissions and LoRa achieves higher throughput
for the rest of the transmissions. MARS follows the high
throughput radio all the time with slight errors for the first
20% of the transmissions and for the transmission between 50-
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Figure 5: Throughput gain of COMNETS
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Figure 6: Performance Ratio on different packet generation intervals
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Figure 7: Latency on different packet generation intervals

55% of the transmissions. This is happening because MARS
does not discriminate low and high throughput errors. At
both locations, MARS outperforms Gummeson et al. [30]
and Lymberopolous et al. [26]. At Location B, Gummeson
et al. [30] and Lymberopolous et al. [26] tend to cross the
solid red line. Theoretically, this is impossible as the multi-
radio systems cannot cross the performance of the single radio
system. However, in practice, these systems were evaluated
at different times, when the channel quality (uncontrollable
factor) would be different. This leads to a small jitter in
throughput, making the performance go beyond the single-
radio system. COMNETS optimizing to avoid high-throughput
errors achieves an average throughput gain of 20.83% and

17.39% over MARS in Locations A and B respectively.

Performance Ratio of COMNETS on different packet
generation intervals is plotted in Figure 6. The performance
ratio is calculated as the average per-packet throughput of
COMNETS over the average per-packet throughput of the
best radio. In this figure, we can see that the performance
ratio of MARS slightly decreases with a decrease in packet
generation interval from 5-1.5s. A significant decrease in the
performance of MARS happens for the packet generation
intervals 1.4s and 1.3s. This significant decrease is due to
the queuing delays caused by the increase in data packets.
This queuing delay also affects the beacon packets that are
used for path quality estimation and the packets that carry



this information to other nodes to calculate path quality. We
follow the same path quality estimation as done in MARS
[6]. The high-cost errors happening due to this phenomenon
cause this significant dip in performance ratio. COMNETS
follows similar trends with a decrease in the packet generation
interval. However, COMNETS powered by TAO[11]-oblique
trees, optimized to avert high-cost errors, achieves a higher
performance ratio than MARS as it can avert most of the
high-throughput errors. This cost-sensitive optimization helps
to improve the overall performance of multi-radio networks
even with inevitable detriments.

Latency of COMNETS on different packet generation
intervals is plotted in Figure 7. According to 5G America’s
report [40], the average required latency for mesoscale IoT
applications is 55ms. The latency of MARS slightly increases
with a decrease in packet generation interval. The latency
of MARS goes beyond the required 55ms when the packet
generation interval is 1.3s. This is because MARS does not
optimize for high-cost errors. However, COMNETS powered
by TAO[11]-Oblique trees optimized to avert high-cost errors
can keep the latency of the system within the required bounds.

VIII. CONCLUSION

We presented COMNETS, a cost-sensitive ML-based ra-
dio selection algorithm to predict high throughput radio for
mesoscale IoT applications. We showed that MARS suffers
from the problem of cost sensitivity, giving a greater margin
for throughput optimization. The current cost-sensitive ML
algorithms set a misclassification cost for each class while
the radio selection problem for multi-radio networks entails
different misclassification costs for each data sample. Optim-
izing such cost-sensitive costs is tedious. First, we leverage the
TAO algorithm to overcome this issue. TAO not only optimizes
the cost for each data sample, it also optimizes the tree for
unseen data along with size reduction, making it efficient for
deployment in resource-constrained IoT devices. Second, we
leverage the structural stability property of TAO to understand
the essence of the radio selection problem. By using TAO-
optimized sparse oblique trees, we gain a more fundamental
understanding of the importance of the different input features,
and how COMNETS makes the classification decisions at
different regions in the network. Having a tree structure allows
for easier interpretability than other ML techniques (e.g. neural
networks). Finally, our evaluations on large-scale, real-world
deployments show that COMNETS achieves a throughput gain
of 20.83% and 17.39% than MARS at two locations A and B,
respectively.
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