
MARS: Multi-radio Architecture with ML-powered
Radio Selection for Mesoscale IoT Applications

Jothi Prasanna Shanmuga Sundaram∗, Arman Zharmagambetov∗, Magzhan Gabidolla∗,
Miguel Á. Carreira-Perpiñán∗, Alberto E. Cerpa∗

∗Computer Science and Engineering, University of California, Merced, CA 95343, USA

Abstract—IoT is rapidly expanding from traditional small-
scale (0–100m) applications like smart homes and large-scale
(1–5km) applications like Microsoft’s FarmBeats to emerging
mesoscale (0.1–1.5km) applications such as smart-grid NANs and
peer-to-peer energy trading in smart homes. These applications
demand high throughput and low latency but currently lack
dedicated radio technologies. Our qualitative analysis identified
Zigbee and LoRa as promising candidates. Further quantitative
analysis revealed that a multi-radio architecture combining
these radios achieves the best throughput. However, within the
500–1200m range, termed the gray region, it is unpredictable
which radio offers higher throughput at any given moment. To
address this, we developed MARS, a Multi-radio Architecture
with Radio Selection, powered by TAO-optimized decision trees
that select the high-throughput radio at the time of transmission.
These decision trees require instantaneous path quality estimates,
but traditional multi-hop Zigbee networks cannot provide these
promptly due to propagation and queuing delays. We overcome
this challenge by introducing Decision Tree-based updates to in-
stantaneously estimate end-to-end path quality. Large-scale, real-
world experiments with MARS demonstrated average throughput
gains of 48.2% and 49.79% at two different locations.

I. INTRODUCTION

Traditional IoT networks span small-scale (e.g., smart
homes, 10–100m) and large-scale (e.g., Microsoft FarmBeats,
1–5km) applications [1], whereas emerging use cases—such
as smart-grid Neighborhood Area Networks [2], target track-
ing [3], industrial automation [4], [5], and peer-to-peer en-
ergy trading [6], [7], [8] operate at intermediate distances
of 0.1–1.5km, which we term mesoscale IoT applications.
These applications often rely on mains power or large battery
reserves [9], [10], enabling latency and throughput to serve
as key performance indicators that implicitly capture reliabil-
ity [11]. Unlike the relatively stable conditions of smart homes
or agricultural deployments, mesoscale environments are urban
and dynamic, with wireless links impacted by buildings, hu-
man activity, and vehicles. Despite their growing significance,
these applications lack purpose-built radio solutions. To close
this gap, we explored the performance of the available COTS
radios for mesoscale IoT applications.

First, we conducted a qualitative analysis on the available
IoT radios. This analysis identifies Zigbee and LoRa as
potential candidates for mesoscale IoT applications. Further
quantitative analysis of the radio candidates on both single-
hop and multi-hop topologies show that Zigbee and LoRa
achieve competitive throughput at the distance of 500-1200m
from the gateway, termed the gray-region. In this gray-region,
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LoRa and Zigbee radios achieve high end-to-end throughput
at different time instants due to erratic channel conditions.
The fundamental finding is that Zigbee and LoRa can work
together as a multi-radio system and efficiently switch radios
to maximize throughput. However, instantaneously selecting
a high-throughput radio is not a trivial problem because of
erratic link quality dynamics in mesoscale IoT environments.

Second, we developed MARS to instantaneously select
high-throughput radio during transmission, on a per-packet
basis, using end-to-end path quality metrics. MARS’s node
comprises both Zigbee 2.4 GHz and LoRa 915 MHz radios.
While it is intuitive to employ a Machine Learning (ML)
model to perform radio selection, it entails the challenge of
obtaining instantaneous path quality estimations. Multi-hop
Zigbee radios propagate the quality information of all the
links along the path to compute path quality [12]. However,
the propagated link quality info expires before it reaches the
destined node because of temporal link quality variations,
propagation, and queuing delays along the path. While it
is ideal to compute the path quality of the entire path, we
observed that a part of the entire path length is sufficient to
identify the high throughput radio. We performed extensive
analysis and evaluation on multiple topologies, to find the
fewer hops required to estimate the end-to-end path quality as
input to our ML model and still obtain good radio selection
accuracy. This way we balance the trade-off between perfectly
accurate global metrics that cannot be gathered on time and
acceptably accurate local metrics that can be collected on time
while still providing good input for our ML model, trained by
CART[13], to achieve acceptable accuracy.

Finally, we optimized the CART with Tree-Alternating Op-
timization (TAO) [18]. The TAO algorithm optimizes the tra-
ditional trees to achieve higher accuracy. The TAO-Optimized
CART (TAO-CART) can be converted into IF...ELSE state-
ments for efficient deployment on IoT end devices. A large-
scale, real world evaluation of MARS on a complex mesh
topology at two different locations showed that MARS can
instantaneously select the high-throughput radio during trans-
mission, achieving an average throughput gain of 48.2% and
49.79% than the competing single and multi-radio systems.

In summary, the contributions of our work are:
(i) Identifying the absence of a dedicated radio for emerging
mesoscale IoT apps, we developed an intelligent multi-radio
architecture with COTS IoT radios, Zigbee and LoRa, with an
order of magnitude difference in theoretical throughput.
(ii) Through experimental analysis, we identified the existence
of a gray-region between 0.5-1.2 Km from the gateway where



Table I: A comparison of Related Work with MARS
Multi-radio systems Radios Used Optimized Metric Implemented Range >500m? Radio Selector Mobility?Energy Reliability Throughput Latency
Backpacking [14] 802.11 + 802.15.4 ✔ ✗ ✗ ✗ ✗ ✗ ✗
Kusy et al. [15] 802.15.4 (915MHz) + 802.15.4 (2.4GHz) ✗ ✔ ✗ ✗ ✗ ✗ ✗

Gummeson et al. [16] 802.15.4 (915MHz) + 802.15.4 (2.4GHz) ✔ ✗ ✗ ✗ ✗ Reinforcement Learning ✔
Lymberopoulos et al. [17] 802.11b + 802.15.4 ✔ ✗ ✗ ✗ ✗ Threshold-based ✗

MARS 802.15.4 (2.4GHz) + LoRa LPWAN ✗ ✗ ✔ ✔ ✔ Decision Trees ✗

Table II: Qualitative comparison of radios in the context of
mesoscale IoT showing the suitability of Zigbee and LoRa.

SigFox WiFi HaLow BLE Zigbee LoRa

Open-source? No Yes Yes Yes Yes
Link Budget (dB) 58 [19] 24.5 [20] 108 [21] 103 [22] 150 [23]

Topology Type LPWAN LPWAN PAN PAN/LAN LPWAN
Communication Range (m) 5000 1000 100 125 [24] 5000

Max bitrate (bps) 600 upto 4M up to 1M 250K upto 27K

it is uncertain which radio provides the best throughput at any
given time due to the temporal link quality variations.
(iii) We developed and implemented CART tree model op-
timized with Tree Alternating Optimization (TAO) for radio
selection. To the best of our knowledge, this is the first real-
world use case of the TAO algorithm.
(iv) We showed that partial path quality can provide sufficient
information for our TAO-optimized tree to accurately select
the high-throughput radio during transmission.

II. RELATED WORK

Multi-radio wireless networks have been extensively ex-
plored using different radio combinations. Backpacking [14]
was developed for high data rate sensor networks. Kusy et
al. [15] developed a multi-radio architecture for WSN. They
show that employing two multi-hop radios in the same node
improves reliability with 3-33% energy overhead. Gummeson
et al. [16] optimize energy consumption by employing a
Reinforcement Learning (RL) based adaptive link layer to
switch radios (CC2420+XE1205) based on channel dynamics.
Lymberopoulos et al. [17] (Zigbee+WiFi) switch radios with
a threshold-based algorithm to optimize energy efficiency. A
comparison of related work with MARS is tabulated in Table I.
MARS is the only work that optimizes throughput and latency
for a deployment range greater than 500m.

III. IOT RADIOS FOR MESOSCALE APPLICATIONS

A qualitative analysis of the available COTS IoT radios
is tabulated in Table II to identify suitable candidates for
mesoscale IoT applications. The closed-source SigFox radio
is unsuitable for private deployments. WiFi HaLow’s low
link budget signals cannot penetrate environmental obstacles.
PAN topology characteristic of BLE cannot cover the entire
mesoscale range. Zigbee and LoRa satisfy all the requirements
of mesoscale IoT apps. So, Zigbee and LoRa, following US
region standards, are chosen for further quantitative analysis.

An experimental quantitative analysis of the chosen Zig-
bee [22] and LoRa [25] radios is conducted in two folds:
single-hop and multi-hop experiments. For the Single-hop
experiments, A sender and receiver of the radio candidates
are placed in both free space and urban-like environments at a
distance of ≈20m from each other. The latter spans multiple
wooden walls, a glass door, and three humans between the
nodes. One thousand 29-byte packets are transmitted from

Table III: Throughput and PLR of Zigbee and LoRa radios
Radio candidate Throughput (bps) PLR (%)

Zigbee 2.4 GHz-free space 77,634 0
Zigbee 2.4 GHz-urban-like environment 56,530 33.40

Zigbee 915 MHz-free space 9,530 0
Zigbee 915 MHz-urban-like environment 6,777 24.60

LoRa 915 MHz-free space 4,579 0
LoRa 915 MHz-urban-like environment 4,579 0

the sender to the receiver to average the achieved throughput
and Packet Loss Rate (PLR). Zigbee motes are programmed
using TinyOS [26] where CSMA and Link-layer ack’s are
disabled. There is no reliability mechanism for retransmitting
the packets. The results are tabulated in Table III. First,
experiments were conducted using a Zigbee radio operating
at 2.4 GHz. In a free-space environment, Zigbee achieved a 0
PLR with an average throughput of 77.63 Kbps. However, in
an urban-like environment, the throughput dropped to 56.53
Kbps with 33.40% PLR. This performance degradation is
attributed to increased packet loss and reduced signal quality
due to environmental obstructions. The higher PLR in urban
settings results from signals being lost or corrupted, while
the reduced throughput is due to signal attenuation caused by
penetration through obstacles. An intuitive idea would be to
utilize Zigbee radio at a lower frequency to improve the signal
penetration capacity. So, we experimented with Zigbee radios
operating at 915 MHz. It achieves 0 PLR in free space with
an average throughput of 9.53 Kbps. It achieves an average
throughput of 6.7 Kbps with 24.60% PLR in an urban-like
environment. LoStik [27] LoRa USB nodes using SF7 in
125KHz bandwidth were used for testing LoRa. LoRa was
able to achieve 4.58 Kbps average throughput with a 100%
reception ratio in both free-space and urban-like environments.
LoRa’s penetration capacity is higher because of its robust
modulation scheme [25], generating high link budget signals.

Zigbee 2.4 GHz achieves higher throughput and PLR than
Zigbee 915 MHz. This high throughput characteristic is highly
desirable for mesoscale applications despite the higher PLR,
since throughput will further degrade in multi-hop communic-
ations due to queueing and channel detection delays [28]. If
we choose Zigbee 915 MHz because of a lower loss rate,
its lower throughput will further degrade when employed
in a multi-hop fashion [28]. So, we choose Zigbee 2.4GHz
over Zigbee 915MHz. Comparing LoRa 915MHz and Zigbee
915MHz, LoRa 915 MHz achieves lower PLR than Zigbee
915 MHz as LoRa signals have a stronger link budget. Hence,
Zigbee 2.4GHz is better for apps demanding multi-hop com-
munications while LoRa is better for apps demanding long-
range, single-hop communications. All the further experiments
employ Zigbee 2.4GHz, LoRa 915MHz radios.

Multi-hop experiments: The multi-radio nodes shown in
Fig. 2 are place in a simple line topology for these exper-
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(d) TF at 1200m
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(e) TF at 1400m (f) Average throughput at different distances
Figure 1: Throughput Fluctuations (TF) at different distances from the gateway

Figure 2: Multi-radio node that contains both USB-based LoRa
and Zigbee radios hosted by Raspberry Pi 3B.

iments. One gateway and fifteen nodes are placed in a line
topology in free space such that each hop spans approximately
100m. Each node has both LoRa and Zigbee radios as shown
in Figure 2. 29-byte sized packets are concurrently transmitted
by both radios at the rate of 1 packet every 3 seconds. LoRa
can reach the gateway in a single hop, whereas Zigbee takes
multiple hops. LoRa nodes transmit in a 125KHz channel with
spreading factor SF7. The LoRa gateway is capable of receiv-
ing eight packets concurrently [25]. This reduces collisions.
Link-level acknowledgments are disabled for Zigbee radios
and they use CSMA MAC while LoRa uses ALOHA MAC.
The nodes are placed in such a way that they have connected
links [29] to the neighboring nodes.

Multi-hop result analysis: Fig. 1f depicts the End-to-End
(E2E) throughput as a function of distance. This end-to-end
throughput at a specific distance is the average of 1000 pack-
ets. The drastic difference between LoRa and Zigbee at 100m
is due to the fact that only one node is transmitting without any

contention. A considerable drop in Zigbee’s throughput is seen
from 100m-300m as there are three contenders. CSMA blocks
two other links from transmitting to avoid collisions, allowing
only 1 of 3 links to transmit at any given time until 300m. After
300m, Zigbee’s throughput steadily decreases with distance
because of CSMA blocking delay and queuing delay. LoRa’s
throughput does not show any drastic decrease, but it slightly
decreases with distance. This is because the LoRa signals are
robust enough to pass through an urban-like environment, as
LoRa’s CSS modulation makes the signal highly resistant to
attenuation. Also, it should be noted that the LoRa gateway can
receive and decode eight packets concurrently. Fig. 1f shows
that Zigbee wins until 500m and LoRa wins after 1200m.
LoRa and Zigbee achieve competitive throughput between
500m- 1200m from the gateway, termed the gray region.

End-to-end throughput fluctuations in the gray region:
Fig. 1f shows that LoRa and Zigbee achieves competitive
throughput between 500m-1200m from the gateway. This
showed the average E2E throughput of a thousand packets
at different distances. This does not depict the end-to-end
throughput fluctuations of different packets over time. So, we
conducted an in-depth analysis of end throughput fluctuations
over time at different distances from the gateway.

Figs.1a - 1e show the throughput fluctuations for 30 minutes
between 100m to 1400m from the gateway. Zigbee wins at
100m (Fig.1a) and LoRa wins at 1400m (Fig.1e). At 500m
from the gateway, Zigbee achieves higher throughput most
of the time. Whenever Zigbee’s throughput is falling, LoRa
is able to back up Zigbee to provide better throughput. The
difference in throughput of Zigbee and LoRa is considerably
higher at 500m. Fig. 1c shows the throughput fluctuations at
800m. Zigbee mostly wins, but the throughput of Zigbee is



Figure 3: Mesh topology - nodes populated at the gray region.

highly fluctuating as packets are experiencing multiple hops.
The average throughput of Zigbee and LoRa is very close
to each other. Fig. 1d shows that Zigbee experiences low E2E
throughput. So, it mostly underperforms at this longer distance
of 1200m from the gateway. The fundamentally surprising
information here is that two radios with an order of magnitude
difference in theoretical throughput, are achieving competitive
performance in the gray region. From the above throughput
fluctuations, it is evident that using a single radio IoT network
leads to throughput loss even on a simple line topology. While
most of the real-world IoT applications will employ the more
complex mesh topology, this throughput loss will get further
amplified in real-world mesh topology applications.

IV. WHY MULTI-RADIO FOR MESOSCALE IOT APPS?

Line topology is seldom used in real-world applications.
Hence, it will be interesting to explore the throughput fluctu-
ations of LoRa and Zigbee in a mesh topology.

Experimental setup: The multi-radio end-devices shown
in Figure 2 are populated in the gray region to form a mesh
topology as shown in Fig. 3. A total of one thousand 29-byte
packets are transmitted by each node in the network destined
for the gateway. The R Pi host commands both radios every 3
seconds to transmit a packet concurrently. The Zigbee radios
employ a Distance-Vector protocol [30] for multi-hop routing.

Results: The throughput achieved by both radios of the
network is plotted as a CDF in Fig. 4. This figure shows that
LoRa achieves higher throughput for 59% of the transmissions
and Zigbee achieves higher throughput for 41% of the trans-
missions. The throughput is calculated as the fraction of total
bits transmitted over the incurred latency. It is to be noted
that the throughput has an inverse relationship with latency.
According to 5G America’s report [31], the average required
latency for mesoscale IoT applications is 55ms. The average
latency achieved by Zigbee-only and LoRa-only networks is
62.32 ms and 66.55 ms, respectively. This is higher than the
average required latency, 55ms, for mesoscale apps. So, the
single-radio networks are not useful for mesoscale IoT apps.

A trace-driven simulation is conducted to understand the
throughput gain of a multi-radio network system comprising
both Zigbee and LoRa radios. This trace-driven simulation
mimics the performance of a multi-radio network that can
choose a high-throughput radio for every transmission. This
is plotted as the dashed golden line in fig. 4. This dashed
golden line perfectly traces LoRa radio until the first 59%
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Figure 4: Multi-radio system with Zigbee+LoRa radios
achieves higher throughput than single-radio systems.

of the transmissions and follows Zigbee radio for the next
41% of the transmissions. The average latency achieved by
this simulated multi-radio network, 50.62ms, falls within the
average required latency bounds. This shows the necessity of
an intelligent multi-radio system that can choose a higher
throughput radio at the time of transmission. While it is
convenient to choose a high-throughput radio based on traces,
it is tedious to predict a high-throughput radio in real-world
deployments, as the end-to-end throughput fluctuates over
time, as shown in Figs.1a - 1e. If an end node can predict
these throughput fluctuations, a high-throughput radio can be
selected at the time of transmission to maximize throughput.

Why ML? Throughput varies in real deployments (Fig-
ures 1a–1e) due to dynamic link conditions. ML enables real-
time prediction of these fluctuations for radio selection.

V. BUILDING A MACHINE LEARNING MODEL

This section explains the process of building a Machine-
Learning (ML) model for instantaneously selecting a high-
throughput radio at the time of transmission. Problem for-
mulation: This high-throughput radio selection problem is
formulated as a classification problem. This classification
problem takes the End-to-End (E2E) path quality estimations
of both radios as input to output the instantaneous high-
throughput radio. The input feature vector becomes:

Inputi = [E2E − PQLoRa, E2E − PQZigbee] (1)

The output of theML model is the radio predicted to have
higher instantaneous throughput, expressed as:

Outputi = [Zigbee|LoRa] (2)

Feature Selection: The classification problem formulated
above needs E2E-PQLoRa and E2E-PQZigbee to predict the
instantaneous high throughput radio. The most common E2E
path quality metrics used for multi-hop Zigbee networks
are Hop Number (HNZ), Packet Reception Ratio (PRRZ),
Expected Transmission Count (ETXZ) [12], and Required
Number of Packets (RNPZ) [32]. HNZ is the node’s dis-
tance from the gateway in terms of hops. It is a discrete
value ranging from [5,12] inclusively. It is obtained via the
distance vector routing protocol run by Zigbee radios. The
high data rate Zigbee Radio frequently transmits short beacon
packets to estimate the path quality metrics. PRRZ is a well-
known metric calculated as the ratio of the total number



Table IV: Training and Testing accuracy of different ML models and optimizations for all the topologies
ML

Models
and

Optimizations

Location A Location B
Line Mesh Mesh

Training Accuracy
(in %)

Testing Accuracy
(in %)

Training Accuracy
(in %)

Testing Accuracy
(in %)

Training Accuracy
(in %)

Testing Accuracy
(in %)

SVM 83.59±1.60 83.37±2.51 82.15±0.89 80.87±3.50 78.31±1.90 76.62±4.65
LR 83.65±1.01 83.87±3.566 82.59±0.83 81.25±3.46 81.21±0.57 80.50±2.21

CART 93.00±0.49 88.00±3.40 92.53±0.52 83.75±1.97 90.56±0.25 82.37±2.94
TAO-CART 93.00±0.56 88.00±2.33 89.375±0.26 85.625±4.12 94.71±0.38 93.87±1.69

of packets received over the total number of packets sent.
ETXZ considers both forward and backward link qualities
to calculate the metric. In our case, only the forward link
quality is required to estimate E2E path quality estimation
from an end device toward the gateway. So, the ETXZ

becomes 1/PRRZ , making this a redundant metric in the
presence of PRRZ . RNPZ has the unique characteristic of
capturing the underlying distribution of packet losses [32].
So the HNZ , E2E PRRZ , and E2E RNPZ path quality
metrics are considered for E2E-PQZigbee. These metrics are
calculated with frequent beacon packets since Zigbee is a high-
data-rate radio. We calculate PRRZ , RNPZ , and ETXZ over
a window of size α. Through trial and error, we identified that
α=10 gave us better results during our experiments.

On the other hand, the communication channels of low data-
rate LoRa radio will be clogged if frequent beacon packets are
sent. Hence the RSSI of the ACK sent by the gateway for the
previous data packet is considered for estimating the end-to-
end path quality of the LoRa radios (E2E-PQLoRa). After
finalizing all the input features, eq. 1 becomes:

Inputi = [HNZ , RSSIL, PRRZ , RNPZ ] (3)

Data collection is done on three different topologies. "Loc-
ation A - Line" is the multi-hop line topology described in
§III and "Location A - Mesh" is the mesh topology described
in §IV. "Location B - Mesh" is the mesh topology mentioned
in §VII. We develop separate ML models for each topology.
Each topology consists of 15 end nodes and one gateway.
Since our region of interest is in the gray region, nodes
are populated in this region to form a mesh topology. Data
packets transmitted by nodes in the gray region are considered
for model training and testing. During this data collection
experiment, the host Raspberry Pi will command both radios to
simultaneously transmit a 29-byte data packet. The throughput
of each transmitted data packet is recorded along with path
quality estimations of each radio at the time of transmission.
A total of 25,500 data packets were recorded. This dataset is
manually labeled by a human to identify the high-throughput
radio for each transmitted packet. Zigbee radios sent beacon
packets to estimate the local link qualities of each link in
the network. These local link qualities were used to manually
calculate the path quality metrics.

Prediction Methods and Results: The three widely used
classification models, namely Logistic Regression (LR), Sup-
port Vector Machine (SVM), and CART Decision Trees
(CART) were trained using the trace-driven data set obtained
from large-scale real-world experiments on different topolo-
gies. An ML model is built offline for each location. MARS

will deploy the chosen ML model in all the nodes in that
specific topology. Their training and testing accuracy are
averaged over 5-fold cross-validation on a dataset based on
real-world experiments. CART Decision Tree Classifier [13]
is a classical and one of the most popular algorithms to
train a DT. The TAO algorithm [18], takes an initial tree,
either generated randomly or induced by traditional algorithms
(e.g. CART), and optimizes it jointly over the parameters
of all the nodes in the tree. TAO works in an alternating
optimization fashion by cycling over different depths of a tree.
At a given depth, TAO optimizes all nodes in that specific
depth in parallel while guaranteeing a monotonic decrease of
the desired objective function, such as misclassification errors.

The training and testing accuracies of the widely used clas-
sification models, namely SVM, LR, and CART, are tabulated
in Table IV. From these results, it is clear that CART can
achieve higher accuracy than SVM and LR. Compared with
CART, TAO-CART achieves similar accuracy for the simple
"Location A - Line topology" which is seldom used in real-
world applications, and higher accuracy than CART for the
"Location B-Mesh" topology. Also, the difference between the
Training and Testing accuracies of TAO-CART is comparably
smaller than that of CART for all the topologies. This means
TAO-CART is highly generalized and suitable for unseen data.

VI. REALIZING TAO-CART ON END-DEVICES

The TAO-CART radio selector is found to achieve higher
accuracy. However, realizing and deploying TAO-CART on an
IoT end device entails the following challenges:

(i) Model size and Inference Latency: Deploying TAO-
CART with a minimal memory footprint on resource-
constrained IoT devices is crucial. TAO-CART outputs a tree-
like structure for predicting high-throughput radio.

The tree-based model, when converted into a series of if-else
statements, occupies 36KB of disk memory. On a Raspberry Pi
platform, the model achieves an inference latency of 0.008ms.
Owing to its low computational and memory footprint, this
deployment is well-suited for resource-constrained IoT edge
devices, with further room for optimization.

(ii) Instantaneous path quality estimations: The TAO-CART
radio selector needs instantaneous end-to-end path quality as
an input to accurately predict the high-throughput radio. The
models trained and tested in the previous section used a trace-
driven data set, whose multi-hop end-to-end path qualities
of Zigbee radios were manually calculated. In real-world
deployments, the local link qualities should be propagated
throughout the network for path quality estimation. However,
this network-wide multi-hop link quality propagation may not
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Figure 5: DT-based PQ estimation. In figures 5a, 5b, the x-axis denotes the number of links considered to calculate PQ metrics.

Figure 6: Traditional path quality propagation is not instant-
aneous at all distances from the gateway.
be instantaneous at all distances from the gateway due to
the chaotic link quality variations, queuing and propagation
delays. We solve this challenge by developing a DT-based
instantaneous path quality estimator.
A. Tradition path quality estimations are not instantaneous

Traditional PQ estimation for a multi-hop ZigBee network
may not be instantaneous at all distances from the gateway.
Traditional PQ estimations for a multi-hop ZigBee network
need the link quality estimation of all the links along the path.
In section V, TAO-CART was trained with a trace-driven data
set, whose path qualities were manually calculated based on
the local link qualities. In practice, local link qualities along
the path should be propagated throughout the network so that
they can be used to estimate the path quality. The packet
in which these link qualities are propagated will experience
delays at different hops due to (i) wireless link quality vari-
ations and (ii) packet processing delays. Packet processing
includes read/write delays to append link quality sequences
of the intermediate nodes, link-layer Acknowledgment delay,
CSMA delay, propagation, and queuing delays along the path
in a multi-hop network. So, the propagated local link quality
may expire when it reaches a node estimating the metric.

The problem of traditional PQ estimation is depicted in
Fig. 6. In this figure, Node 1 sends a beacon packet to Node
0 every 30ms. Node 0 stores the reception and loss of the
beacons as a binary bit-sequence. It is identified through
experiments that propagating a packet containing this link
quality sequence takes 33ms on average for a single hop
transmission accounting for all the above-mentioned delays
while the network has fully functional control and data planes.
Figure 6 depicts that the link quality sequence of link 1-0

propagated by Node 0 becomes invalid when it reaches Node
3. The bit-to-bit similarity of the link sequence of Node 0
at 199ms is not the same as propagated by Node 0. The
bit-to-bit similarity reduces to 70% at the third hop. This
problem will further be amplified if all the nodes along the
path append their link quality sequence to this packet for
network-wide advertisement. Since the gray region is 500m-
1200m from the gateway, estimating path quality with expired
link quality sequences will not be instantaneous, unable to act
as an indicator of E2E throughput fluctuations.
B. DT-based path quality estimation

DT-based path quality estimation is developed to mitigate
the problem of conventional path quality estimation for multi-
hop networks. While the conventional path quality is calcu-
lated with Link Quality (LQ) information from all the links
along the path, DT-based path quality estimation requires LQ
information only from a portion of the entire end-to-end path
to compute the PQ metrics. This will highly reduce the delay
incurred to propagate LQ information in a multi-hop Zigbee
network. DT-based path quality estimation surfaces from the
two important observations listed below: (i) The link quality
of each link in the path may independently change based
on the deployed environment, and (ii) Each end node runs
MARS to select a radio for transmitting the packet. A path
from an end node to the gateway consists of multiple links.
While it is intuitive to understand that LQ information from a
portion of the entire end-to-end path is enough to compute
PQ metrics, the challenge here is to identify the required
path length, RPn, so that the TAO-CART radio selector can
accurately predict the high-throughput radio. For example,
say a path from the end node to the gateway consists of 10
links. Traditional PQ estimation uses LQ information from
all 10 links to compute PQ metrics, whereas DT-based PQ
estimation requires LQ information only from RPn (<10) links
to compute PQ metrics. The problem here is to define RPn.
We address this problem by training and testing decision trees
with PQ metrics computed from different partial path lengths
(RPn) to understand the prediction accuracy of DT.

A DT takes the end-to-end path quality metric of both
radios as input and chooses a radio for transmitting the packet.
The following test is conducted to identify the Required Path
length RPn: The path quality metrics are calculated with LQ
information from a different number of links, from an end
node towards the gateway.
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Figure 7: Throughput and Latency performance of MARS

Figure 8: Location B - mesh topology

The training and testing accuracy of the models using LQ
information from the different number of links along the path
for mesh topologies at Locations A and B are depicted in Fig-
ures 5a and 5b respectively. From these figures, it is inferred
that there is a very gradual increase in accuracy after the fourth
and fifth hops for the "LocationA-mesh" and "LocationB-
mesh" topologies, respectively. These decision trees are further
optimized by the TAO algorithm. The above values are set to
RPn for our large-scale experiments. Figure 5c shows that the
bit-to-bit similarity of conventional PQ estimation decreases
with increases in hops while the bit-to-bit similarity of DT-
based PQ estimation averages to 81%.

VII. LARGE-SCALE EXPERIMENTAL EVALUATIONS

MARS is evaluated through large-scale real-world, mesh
topology experiments conducted on our campus. Two mesh
topologies are set up in two different locations as shown in
Figs. 3 and 8. These topologies are deployed at locations
with complex environments with different building materials
and heavy human influx. A total of 10,400 data packets were
transmitted at both locations for this real-world evaluation.

Benchmarks: MARS is compared with the single radio
systems formed by (i) Zigbee-only and (ii) LoRa-only radios.
MARS is also compared with two Multi-radio systems: (i)
Q-learning-based radio selector [16] and (ii) Threshold-based
radio selector [17], optimizing for energy efficiency. We
made our best effort to adopt these to optimize throughput.
The threshold-based algorithm [17] is based on the break-
even points identified through experiments similar to Fig. 1f.

Table V: Thresholds identified to achieve higher throughput in
the gray-region based on Lymberopoulos et al. [17]

500-700m 700-1000m 1000-1200m

Zigbee RR ≥77% ≥80% ≥83%
LoRa RSSI ≥-72 dBm ≥-71 dBm ≥-71 dBm

Fallback radio Zigbee LoRa LoRa

The thresholds are set based on a node’s distance from the
gateway and the instantaneous end-to-end path quality of
the radios. End-to-end reception ratio and RSSI are used
as the instantaneous path-quality indicator for the multi-hop
Zigbee and the single-hop LoRa radios, respectively. These
thresholds are identified from the traces obtained from real-
world experiments. This threshold-based algorithm divides the
gray region into three sub-regions 500-700m, 700-1000m, and
1000-1200m based on grouping similar indicators, achieving
higher throughput. Thresholds are set based on these sub-
regions for a fair comparison. Thresholds tabulated in Table
V are identified via experiments to achieve higher throughput
in each sub-region. A radio having end-to-end reception ratio
greater than 77%, 80%, and 83% achieves higher throughput
in the sub-regions 500-700m, 700-1000m, and 1000-1200m
respectively while LoRa’s RSSI ≥-72 dBm, ≥-71 dBm and
≥-71 dBm achieve higher throughput in the sub-regions 500-
700m, 700-1000m, and 1000-1200m respectively. So, in the
case of one radio performing better than the other, it will be
indicated by the thresholds, eventually selected for transmit-
ting the packet. From the experimental traces, the fall-back
radio is identified to achieve better throughput if both radios
fall inside or outside the defined threshold region.

The sophisticated RL-based radio switching protocol of
Gummeson et al. [16] suffers from the below-described prob-
lems: (i) During data transfer between two radios in the com-
munication range, the radio switching protocol, designed for
energy efficiency, does a three-way handshake to switch radios.
This incurs additional latency which will heavily degrade the
throughput. (ii) A well-known issue of model-free RL is that
it requires heavy training data to converge to an acceptable
performance [33] and the amount of data samples used by
Gummeson et al. [16] for training is obscure.

Performance evaluation: The throughput and latency per-



formance of MARS are depicted in Figs 7a-7c. Figs. 7a,7b
plots the throughput of different radio systems as CDF.
From these figures, it is clear that the Q-learning-based radio
selector [16] achieves the least throughput gain of all the
multi-radio systems because of its three-way handshake. The
threshold-based radio selector [17] converges towards the
high-throughput Zigbee only after 60% of the transmissions.
This is because the threshold-based radio selector is not able
to identify the high-throughput radio when both radios fall
inside the threshold region. The identified fallback radios do
not achieve higher throughput all the time because of erratic
link quality variations.

MARS closely follows the high-throughput radio as it
instantaneously identifies the throughput fluctuations. In
Location-A, the threshold-based radio selector algorithm
achieves an average throughput gain of 18.79% and 15.31%
than Zigbee-only and LoRa-only networks respectively.
Whereas, MARS achieves an average throughput gain of
55.93%, 57.22%, and 36.32% than Zigbee-only, LoRa-only,
and Threshold-based radio selector networks respectively.
Fig. 7b shows similar trends in Location B. In this location,
all three multi-radio systems tend to cross the solid red line
unlike Fig. 4, where the optimal performance was obtained
offline through a trace-based evaluation. Hence, the simulated
optimal multi-radio performance has to be chosen from any
one of the available throughputs making the golden dashed
lines of Fig. 4 to stay within the solid lines. The performance
evaluations were conducted in real-world deployments. The
channel conditions may not be identical when each system is
evaluated. This change in channel conditions led to a small
difference in throughput making the multi-radio systems cross
the solid line. In Location-B, the threshold-based radio selector
algorithm achieves an average throughput gain of 16.06%,
and 19.57% than Zigbee-only and LoRa-only networks re-
spectively. MARS achieves an average throughput gain of
53.77%, 58.34%, and 32.49% than Zigbee-only, LoRa-only,
and Threshold-based multi-radio networks respectively.

Average required latency for mesoscale IoT. According
to 5G America’s report [31], the average required latency for
mesoscale IoT applications is 55ms. Fig. 7c shows the average
latency achieved by different radio systems at two different
locations. LoRa-only and Zigbee-only networks are not able
to achieve the required latency in the gray region. MARS is
able to achieve an average latency of 51.48ms and 53.98ms
in Locations A and B, respectively. MARS achieves the goal
while the other radio systems fail.

VIII. CONCLUSION
To conclude, we identified that multi-radio architecture is

inevitable for mesoscale IoT applications. The goal of MARS
is to select a high-throughput radio to be used at any point
in the network, using different network paths and link-layer
metrics gathered from the radios. The radio selection is done
using the TAO-optimized decision trees, which are easy to
deploy in an IoT end device with limited computational power.
In addition, we show that collecting local path metrics as
input to our decision trees provides sufficient information to

identify the high-throughput radio over the entire path. MARS
is evaluated on a large-scale complex mesh topology at two
different locations. The results show that MARS can identify
the high-throughput radio at the time of transmission. This
leads to an average throughput gain of 48.2% and 49.79% than
the competing schemes at Locations A and B, respectively.
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